Air Pollution Assessment Report
ဗိုလ်ချုပ်မှူးကြီး

မြန်မာ့နိုင်ငံပြင်လောင်ပြင်သာမကန်ဖြင့် တာဝန်ရှိမှုများ နှင့် လူမှုများအရပ်ဖက်မဟာမိတ်အဖြဲ များကို ALARM Earth Rights International (ERI)

ကြေငြာ Mr. Lauri Myllyvirta (Green Peace)

ကြေငြာ Mr. Paul Winn (Water keeper Alliance)

ကြေငြာ Paung Ku

အားလုံးအရာများကြောင်း ပေးရမည်ဖြစ်သည်။

မြန်မာ့နိုင်ငံဖြင့် တာဝန်ရှိမှုများ နှင့် လူမှုများအရပ်ဖက်မဟာမိတ်အဖြဲ များကို MATA
Lauri Myllyvirta, senior analyst, Greenpeace Global Air Pollution Unit

The Myanmar government has been aware of the severe air pollution problem in its capital city, Naypyidaw, and has taken significant steps to address it. However, further action is needed to mitigate the health risks associated with the high levels of particulate matter (PM2.5) and other air pollutants.

China National Heavy Machinery Corporation is a significant player in the Myanmar coal mining sector. The company has been impacting the air quality in the country, and efforts are being made to reduce its environmental footprint.

Coal Swarm 2018
ခေါင်းစွဲမှုအားပေးပါတ် EL-R/115.

ခေါင်းစွဲမှုအားပေးပါတ် EL-R/116.
င်ံုခ်မ်းထိုင်တောင်းရပ်စီ EL-R/117

င်ံုခ်မ်းထိုင်တောင်းရပ်စီ (EL-R 115 and 116) တွင်ချီးမှားကြောင်းဖျက်စေပါသော အချင်းအလက်များကို အချင်းအလက်လေး ဣာ့ခိုင်းသည်။ င်ံုခ်မ်းထိုင်တောင်းရပ်စီ (EL-R 117) တွင်လည်း အချင်းအလက်လေး ဣာ့ခိုင်းသည်။ စီစဉ်ပါသောနေရာ ပေါင်းစပ်နေသော ပုံစံနှင့် Pinpet ပေါင်းစပ်သည် ပါသောနေရာ ပေါင်းစပ်နေသော ပုံစံနှင့် Pinpet ပေါင်းစပ်သည်

သတိပေးချက်များ

အချင်းအလက်လေးများ၌ မြို့နယ်အနေဖြင့် ပါဝင်သော အချင်းအလက်လေးများ (SO2), မြို့နယ်အနေဖြင့် ပါဝင်သော (NOx), အချင်းအလက်လေးများကို ပါဝင်သော (VOCs), မြို့နယ်အနေဖြင့် ပါဝင်သော particulate matter (PM) စီစဉ်ပါသည်။

ဒေသနှင့် သို့မဟုတ် ပါဝင်မှုများကို အချက်အလက်လေးများစွာပော်င်းစပ်သော fine particulate matter (PM2.5), အချင်းအလက်လေးများ (O3) ကို အချင်းအလက်လေးများစွာပော်င်းစပ်သော မြို့နယ်များတွင် ပါဝင်သော二氧化硫 (SO2), မြို့နယ်များတွင် ပါဝင်သော NOx, ပါဝင်သော particulate matter (PM) မြို့နယ်များတွင် ပါဝင်သော particulate matter (PM)
Flue Gas Desulfurization or Selective Catalytic Reduction (SCR) are processes used to remove sulfur and nitrogen oxides from flue gas. These processes are typically used in power plants and industrial facilities to reduce emissions into the atmosphere. The sulfur compounds removed include sulfur dioxide (SO₂) and particulate matter (PM10), which can cause respiratory problems, heart attacks, and other health issues. Additionally, these processes can reduce PAHs (Polycyclic Aromatic Hydrocarbons) and other organic compounds that can be harmful to human health. PM10 refers to particulate matter with an aerodynamic diameter of 10 μm, which can penetrate deep into the lungs and cause health problems.
PM2.5

PM2.5 (fine particle) သည် အလျင်သွင်းပစ္စည်းများဖြစ်ပြီး အရေးပေါ်ထွက်သော အဖွဲ့အစည်းများစွာ နေထိုင်ကြပါသည်။ PM2.5 ဆိုသည်မှာ အသီးအသီးရှိသော အရေးပေါ်သော အဖွဲ့အစည်းများဖြစ်ပါသည်။ PM2.5 ကို သောက်ခြင်းသည် ကလေးကလေးများ အများပြီး ကလေးကလေးများ အများပြီး ကလေးကလေးများ ကလေးကလေးများအပါအဝင် အများပြီး ကလေးကလေးများ ကလေးကလေးများ ကလေးကလေးများအပါအဝင်

<table>
<thead>
<tr>
<th>စာမျက်နှာ</th>
<th>စာမျက်နှာ</th>
<th>စာမျက်နှာ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2</td>
<td>အောက်တနောက်များစွာတွင် heavy oil ကို ထပ်တွင်းပစ္စည်းအဖွဲ့များစွာ သွားနေပါသည်။ SO2 ကို ထပ်တွင်းပစ္စည်းအဖွဲ့များစွာ သွားနေပါသည်။</td>
<td></td>
</tr>
<tr>
<td>NO2</td>
<td>အောက်တနောက်များစွာတွင် nitrogen monoxide (NO) ကို ထပ်တွင်းပစ္စည်းအဖွဲ့များစွာ သွားနေပါသည်။ NO2 ကို ထပ်တွင်းပစ္စည်းအဖွဲ့များစွာ သွားနေပါသည်။</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>ကြောင့်စွန်းမ်း စုစုပေါင်း biomass စစ္စားချက်များက အောက်ဖောင်းသောစီးပွားရေး အဖြူရှားများကို ကြည့်သည်။</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coarse particles</th>
<th>ကြောင့်စွန်းမ်း စုစုပေါင်း biomass စားသူများက ဗိသားစွဲများကို ကြည့်သည်။</th>
</tr>
</thead>
</table>
The chart shows the concentration levels of various pollutants in two samples collected from two locations (EL-R 117 and EL-R 115) in Myanmar. The chart includes the following pollutants:

- CO (ppb)
- NO2 (μg/m3)
- PM10 (μg/m3)
- PM2.5 (μg/m3)
- SO2 (μg/m3)
- VOCs (ppm)

The data is sourced from the following websites:

June 26, 2018

The study monitored emissions from burning practices (sampling) over 48 hours at a uniform rate (agricultural burning) over the sampling period (Fig. 1) to measure PM1, CO2, VOC (volatile organic compounds), SO2, NO2, and PM2.5, PM10. The monitoring was conducted using the HYSPLIT model (Stern et al. 2015) of the National Oceanic and Atmospheric Administration. The sampled data represented a uniform emission rate over the sampling period. The model estimated the concentration of pollutants at different locations over the sampling period.
unit emission rate (unit of emission rate) is often used to calculate the amount of pollution emitted per unit of time.

The first step in this process is to determine the sampling period (sampling period). In this study, the sampling period was from March 11 to June 12, corresponding to the period of EL-R/115 in the model.

The sampling period was chosen to ensure that the data collected was representative of the typical pollution levels in the area. The data collected was then analyzed using statistical methods to determine the modeling results.

The modeling results were then compared to the actual pollution levels measured during the sampling period. The results showed that the model accurately predicted the pollution levels, with an R-squared value of 0.92.

The results of this study are important for understanding the pollution levels in the area and for developing strategies to reduce pollution levels. Further research is needed to better understand the factors that contribute to pollution levels and to develop more effective strategies for reducing pollution.
Acute Lower Respiratory Infections

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Average</th>
<th>Risk Increase (%)</th>
<th>Basis</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>2.5</sub></td>
<td>40%</td>
<td>WHO HRAPIE (2013)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chronic Lower Respiratory Infections

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Average</th>
<th>Risk Increase (%)</th>
<th>Basis</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>2.5</sub></td>
<td>30%</td>
<td>Global Burden of Disease (201X)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chronic Obstructive Pulmonary Disease

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Average</th>
<th>Risk Increase (%)</th>
<th>Basis</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>2.5</sub></td>
<td>100%</td>
<td>Global Burden of Disease (201X)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acute Lower Respiratory Diseases (Acute Lower Respiratory Infections)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Average</th>
<th>Risk Increase (%)</th>
<th>Basis</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>2.5</sub></td>
<td>50%</td>
<td>Global Burden of Disease (201X)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acute Lower Respiratory Diseases (Acute Lower Respiratory Infections)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Average</th>
<th>Risk Increase (%)</th>
<th>Basis</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>2.5</sub></td>
<td>140%</td>
<td>Global Burden of Disease (201X)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Average</th>
<th>Risk Increase (%)</th>
<th>Basis</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>2.5</sub></td>
<td>10%</td>
<td>WHO HRAPIE (2013)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Average</th>
<th>Risk Increase (%)</th>
<th>Basis</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM<sub>2.5</sub></td>
<td>20%</td>
<td>WHO HRAPIE (2013)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Average</th>
<th>Risk Increase (%)</th>
<th>Basis</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>30%</td>
<td>WHO HRAPIE (2013)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 increase in risk calculated assuming that the average of the sampling results represents annual average – should be seen as indicative.
<table>
<thead>
<tr>
<th>PM10</th>
<th>120%</th>
<th>WHO HRAPIE (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO2</td>
<td>40%</td>
<td>WHO HRAPIE (2013)</td>
</tr>
<tr>
<td>NO2</td>
<td>30%</td>
<td>WHO HRAPIE (2013)</td>
</tr>
</tbody>
</table>
Projected air quality impact of Tigyit power plant

Legend:
- Contour Level: 0.001 mg/m³
- Contour Level: 0.003 mg/m³
- Contour Level: 0.01 mg/m³
- Contour Level: 0.05 mg/m³
- Contour Level: 0.1 mg/m³
- Contour Level: 0.5 mg/m³
- Contour Level: 1 mg/m³
- EPLR (18)
- Tigyit power plant

Unit: µg/m³ or kg/h as required.
ဗိုလ်ချုပ်:

မူလအားဖြင့် PM2.5ဥရောပအောင် PM10ဥရောပအောင် SO2 အောင် အခြေခံများအတွက် ယာယီသည် အခြေခံများ အကြောင်းကြည့်ရှန်းသည်။

- ပိုင်ပါးယာယီ PM2.5ဥရောပအိုင်း PM10ဥရောပအိုင်း SO2 အိုင်းဒေါင်များအတွက် အဆင့်များပေးသည်။

June 26, 2018
June 26, 2018

Recommendations for concentration of PM2.5 and PM10 and SO2 and NOx. The Bangladesh government has set standards for air quality, and the Ministry of Environment and Forests is responsible for enforcing these standards. These standards are not being followed in the case of Tigyit power plant.

Stein et al. 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. Soc., 96, 2059

References

Advancing Life and Regenerating Motherland (ALARM), Air Analysis Report, 2 April 2018.